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ABSTRACT 

This paper presents a simple 4-bit computer processor design that 

may be built using TTL chips for less than $65.  In addition to 

describing the processor itself in detail, we discuss our experience 

using the lab kit and its associated machine instruction set to teach 

computer architecture to high school students. 

Categories and Subject Descriptors 
C.1.m [Processor Architectures]: Miscellaneous 

General Terms 
Design, Languages 

Keywords 
Architecture, Processor, Education 

1. I#TRODUCTIO# 
In the fall semester of 2005, eighteen high school students at The 

Harker School successfully connected TTL chips on solderless 

breadboards to build their own computer processors.  Most of the 

students had no practical electronics experience, beyond a basic 

understanding of serial and parallel circuits.  We created this 

computer architecture course to complement the high-level 

software focus of the AP computer science course these students 

had already completed.  Our primary goals for the course were: 

• to explore what a computer is 

• to examine the interplay between hardware and software 

• to link machine code to high-level program constructs 

As an undergraduate, the author was among the last of MIT's 

6.004 Computation Structures students to use the MAYBE—a lab 

kit for building an 8-bit TTL computer processor.  Future 6.004 

students would use hardware simulation software instead.  

Although such simulation tools present a powerful and affordable 

way to study computer hardware, we believe there is greater value 

in working with physical hardware, which provides the most 

convincing means for students to internalize the subtle interplay 

between software and hardware. 

2. LAB KIT REQUIREME#TS 
In setting out to find a hardware lab kit, we identified three key 

requirements.  The kit must (1) be understandable, (2) require 

minimal assembly time, and (3) be purchased at minimal cost.  

Striving to keep the processor as simple as possible naturally lead 

to meeting all three requirements.  To achieve a simple design, 

however, it was necessary to give up many features of more 

serious processors.  As long as our processor's instruction set 

comprised a universal programming language, we were willing to 

sacrifice the ability to run large or even useful programs.  

Optimizations such as caching and pipelining would only obscure 

the core computer science concepts we wished to illuminate. 

Like MIT's MAYBE, nearly all university hardware lab kits 

and numerous amateur-designed processors feature the TTL chip 

set.  Although TTL has stringent voltage requirements, its ability 

to withstand static charge made it ideal for our course.  Because 

TTL chips typically come in 4-bit packages, MIT's 8-bit MAYBE 

processor required 2 ALU chips, 2 counter chips, etc.  Students 

assembling MAYBE kits frequently found themselves working 

through the night to complete their wiring.  As this level of time 

commitment is unacceptable for a high school class, we settled on 

a 4-bit datapath for our processor.  We feel certain that students 

can learn as much from building a 4-bit processor as an 8-bit one, 

and a 4-bit processor means half as much time spent wiring and 

debugging, half as much money spent on chips, and a solderless 

breadboard of half the size and cost. 

A search through simple processor designs used in various 

university computer architecture courses and those published 

online by amateurs revealed only a handful of 4-bit processors.  

As each of these was either too complex or insufficiently 

documented, we set out to design our own processor.  In the 

course, we referred to it affectionately as "the CHUMP" ("Cheap 

Homebrew Understandable Minimal Processor"). 

3. DATAPATH 
In all aspects of design, we aimed to identify the simplest 

solution.  Designing an understandable processor meant using a 

RISC architecture, in which a simple datapath and small 

instruction set could give rise to complex behavior.  We decided 

that the simplest design would involve fetching and executing the 

instruction in the same clock tick.  Since both the instruction and 

 

 



the data it manipulated in RAM would need to be accessed in a 

single tick, we stored our program separately in an EEPROM. 

Each CHUMP instruction consists of two parts:  an op-code 

(indicating which operation the processor should perform) and a 

4-bit constant/immediate value (used as a data value, RAM 

address, or program line number).  Hence, the CHUMP can only 

manipulate 4-bit data values, representing numbers in the narrow 

range from 0 to 15 (or -8 to 7).  Likewise, it can only access 16 

locations in RAM.  Finally, the use of a single 4-bit program 

counter means that programs cannot exceed 16 lines. 

Although we originally sought to limit the instruction set to 

just four or five essential instructions, we found that supporting a 

set of 14 instructions did not complicate our design.  This larger 

instruction set allows students to write programs that would be 

both readable and compact.  Thus, a 4-bit op-code is required to 

distinguish among the 14 instruction types, and each CHUMP 

instruction uses 8 bits, as shown in Figure 1. 

 

Figure 1:  Anatomy of a CHUMP Instruction 

 

The CHUMP processor design is illustrated in Figure 2, with 

each of the major components corresponding to a single TTL 

chip.  All bold arrows indicate 4-bit connections (4 wires).  The 

program counter chip (labeled "PC") stores the number of the 

instruction currently being accessed from the Program ROM.  A 

multiplexer selects between the instruction's constant value and 

the data value read from the RAM chip.  The selected value may 

then be used as: 

• the second operand to the ALU, which may increase, 

decrease, or  replace the value stored in the accumulator 

register (labeled "Accum"). 

• the next instruction number 

• the next address to read/write (stored temporarily in 

flip-flops labeled "Addr") 

When a value is read from memory, it is available for use in 

the next clock tick by the subsequent instruction.  Thus, it takes 

two clock ticks and two different instructions to first read from an 

address in RAM and then load this value into the accumulator.  

However, only a single instruction is required to store a value in 

the accumulator to memory.  Not surprisingly, this asymmetrical 

behavior proved to be a stumbling block for students. 

The overall datapath was selected both for its simplicity and 

its computational power.  It allows the program execution to jump 

to a line number stored in RAM, and to use a value stored in 

RAM as the next RAM address to access.  It also allows the value 

in the accumulator to be used as the next line number or memory 

address, provided the programmer first stores it to RAM. 

 

Figure 2:  The CHUMP Processor 

 

This processor design suffers from several major limitations, 

the most significant being the maximum program length of 16 

instructions (which cannot even support the simplest meaningful 

program).  Equally frustrating is the inability to write interactive 

programs, which might pause for user input from switches.  

Finally, the CHUMP instruction set does not support comparison 

operations, which could be used to perform arithmetic on larger 

numbers. 

 

Table 1. CHUMP Constant Instructions 

Instruction Summary Description 

LOAD 
0000 

accum = const; 
pc++; 

load constant into 

accumulator 
ADD 
0010 

accum += const; 
pc++; 

add constant to 

accumulator 
SUBTRACT 
0100 

accum -= const; 
pc++; 

subtract constant 

from accumulator 

STORETO 
0110 

mem[const] = accum; 
pc++; 

store accumulator 

value to constant 

address 
READ 
1000 

addr = const; 
pc++; 

read from constant 

address 
GOTO 
1010 

pc = const; jump to constant 

instruction address 

IFZERO 
1100 

if (accum == 0) 
pc = const; 

else 
pc++; 

jump to constant 

instruction if 

accumulator is 

zero 

 



Each of these limitations is easily addressed by the addition 

of a couple more chips.  Nonetheless, we elected to keep the core 

processor as simple as possible, and then to allow students to 

make such modifications at the end of the course.  Although 

several students were capable of implementing such 

enhancements, ultimately none chose to do so (a good indication 

that the limited CHUMP design was sufficient for our course). 

4. I#STRUCTIO# SET 
The CHUMP instruction set features seven key operations, each 

of which comes in two flavors:  constant and memory.  For 

example, there is an ADD command for adding a constant to the 

accumulator, and another ADD for adding a value from memory to 

the accumulator.  The 4-bit constant portion of the instruction is 

ignored by the seven memory commands.  Table 1 describes the 

seven constant commands.  The corresponding memory 

commands operate similarly on a memory value, and have a 1 in 
the op-code's low-order bit. 

For example, the following program increments the value in 

RAM location 2 repeatedly.  Used properly, every READ 
command should be followed by a memory command, and every 

memory command should be preceded by a READ command. 

0: 10000010 READ 2 
1: 00010000 LOAD IT 
2: 00100001 ADD 1 
3: 01100010 STORETO 2 
4: 10100000 GOTO 0 

5. CO#TROL LOGIC 
We now describe the portion of the processor that examines the 4-

bit op-code and uses it to control the operation of each chip.  The 

CHUMP has 5 control points: 

• Multiplexer:  may select the constant or memory value 

• ALU:  may perform one of several arithmetic operations 

• Accumulator:  may load or ignore the ALU's output 

• RAM:  may perform either a read or write operation 

• Program Counter:  may load a new value or increment 

Because the ALU must perform multiple operations, it 

requires several control bits (6, in the case of the 74LS181 ALU 

chip we used).  Note also that the control bit for the RAM must 

first pass through a flip-flop, so that it is clocked together with the 

4 address bits.  (We used a single chip for all 5 flip-flops.) 

We used a single bit to control jumps.  This jump bit 

indicates either (a) the program counter should increment, 

regardless of the value of ALU output pin Z (which can be used to 

determine if the accumulator value is zero), or (b) the program 

counter's behavior should depend on Z.  (Consequently, an extra 

logic gate is needed to determine the program counter's load input 

from the jump and Z bits.)  Table 2 summarizes the values of the 

control bits used by the CHUMP.  The multiplexer's control bit 

(not shown) is simply the low order op-code bit. 

Note that the ALU function for a GOTO command should 

always cause Z to indicate a zero value, while the function for an 

IFZERO command should cause Z to reflect whether ALU input 

A is zero.  (For the 74LS181 chip, the relevant A=B pin indicates 

whether the ALU's output is 1111.  Therefore, the ALU should 
perform the Logic 1 operation for the GOTO instruction, and �ot A 

for the IFZERO instruction.) 

 

Table 2. Control Logic 

Instruction ALU Accumulator RAM Jump 

LOAD B load read next 

ADD A plus B load read next 

SUBTRACT A minus B load read next 

STORETO  ignore write next 

READ  ignore read next 

GOTO [see text] ignore read load if Z 

IFZERO [see text] ignore read load if Z 

 

Finally, the 4 op-code bits output by the program ROM must 

be fed through a layer of combinational logic so as to determine 

the values of the many control bits indicated above.  Students 

chose to use an additional ROM to perform this task. 

6. LAB KIT 
A fully assembled CHUMP processor is shown in Figure 3. 

 

 

Figure 3:  A high school student built this CHUMP lab kit. 

 

The clock circuit we used ran at just 1 Hz, allowing students 

to follow the execution of their programs in real-time.  In practice, 

we rarely used the clock circuit, relying instead on a simple RS-

circuit to serve as a manual clock source.  Only at the end of the 

course, when the entire kit had been fully tested, did students 



replace the manual clock with the real one to watch their 

computer run automatically. 

Our piecemeal lab kit featured the IC chips listed in Table 3.  

Most are easily replaced by other available TTL-compatible chips. 

 

Table 3. Integrated Circuits Used 

Chip # Description Usage 

555 Timer clock source 

74LS00 Quad 2-Input NAND jump bit logic 

74LS157 Quad 2/1 Data Selector select constant/memory 

74LS161 4-Bit Counter program counter 

74LS174 Hex D Flip-Flop next read/write address 

74LS181 Arithmetic Logic Unit add/subtract, test if zero 

74LS377 Octal D Register accumulator register 

74S289 64-Bit RAM data storage 

AT28C17 2k × 8 Parallel EEPROM program, control logic 

 

Keeping lab costs low was essential to make digital 

electronics accessible to a high school classroom.  As students 

would be required to pay for their lab kits, we were determined to 

keep the cost of a lab kit comparable to that of a text book.  While 

most such university lab kits cost many hundreds of dollars, our 

minimal kit wound up costing less than $65 each.  Table 4 shows 

a breakdown of the major costs involved. 

 

Table 4. Major Lab Material Costs 

Item Cost Recommended Vendor 

solderless breadboard $20 CircuitSpecialists.com 

four 9-volt batteries $6 Target, Walgreens 

22- or 24-gauge solid wire $5 Fry's Electronics 

two AT28C17 EEPROMs $4 Jameco Electronics 

wire stripper $4 Jameco Electronics 

large plastic bin $2 Wal-Mart 

needle-nose pliers $2 Orchard Supply Hardware 

74LS181 ALU $2 Jameco Electronics 

 

Although the CHUMP can be assembled on a much smaller 

board, a solderless breadboard with 3000+ contact points was 

selected to give students greater flexibility in laying out 

components.  Such boards typically sell for $35, so finding them 

online for $20 was critical in keeping the lab kit affordable. 

A 7805 voltage regulator (and requisite capacitors) provided 

a steady 5-volt power source for the various chips.  It requires an 

input of 7.5 – 12.5 volts to work effectively.  Rather that using an 

AC/DC adapter (easily destroyed by a temporary short), we opted 

to use a single 9-volt battery, and purchased several per lab kit. 

The remainder of the lab kit cost was due to the various IC 

chips listed in Table 3, along with several simpler chips used 

earlier in the course (inverter, AND, OR, XOR).  Also included in 

this cost were LEDs (one connected by 330Ω resistor to each of 

the 4 accumulator output pins), DIP switches (used with 2.2kΩ 

resistors as input for various lab assignments), transistors (used 

only in the first lab), and various resistors and capacitors required 

for the power supply and clock circuits.  Finally, $50 payed for a 

single classroom EEPROM programmer. 

7. COURSE CO#TE#T 
The course was built around a series of digital electronics lab 

assignments, listed in Table 5.  In many of the labs, students were 

asked to use simpler circuit elements to build more complex ones.  

For example, students used flip-flops and logic gates to build a 

simple counter, thereby earning a counter chip for their kits.  

(Likewise, successful completion of the final lab earned a student 

the right to use a real computer to implement a simple virtual 

machine, assembler, etc.) 

 

Table 5. Lab Assignment Sequence 

Lab Assignment Summary 

5 Volts 
build voltage regulator; 

learn to use breadboard, switches, LEDs 

Transistors build logic gates from transistors 

NAND Gates build logic gates from NANDs 

Combinational Logic build selector/adder from NOT/AND/OR 

The Clock build clock circuit 

Finite State Machines build FSMs from gates and flip-flops 

Counter / ROM 
use counter to cycle through ROM data 

(later served as PC and program storage) 

ALU / Register 
load/subtract input value from register 

(later serves as accumulator datapath) 

RAM Datapath add selector, flip-flops, and RAM 

Control Logic 
connect program counter, control ROM; 

set 4-bit op-code to test instructions 

Program Execution 
connect program ROM and clock; 

write/execute programs 

 

The building of the processor was assigned incrementally, 

rather than as one large project.  Thus, seven of the assignments 

listed in Table 5 walked the students through the building of a 

particular subsystem of the emerging processor.  Although these 

labs provided students with the design (and sometimes explicitly 

told students which pins to use), the layout of chips on the board 

and much of the wiring decisions were left to the students. 

The course also addressed a variety of conceptual material, 

including the static discipline, Karnaugh maps, finite state 

machines, and a cursory discussion of computability.  In focusing 

only on material essential for teaching what a computer is, we 

omitted topics such as timing, pipelining, caching, interrupts, 

virtual memory, and operating systems.  On the other hand, 

students would not truly understand what a computer is without 

understanding what it means for a machine or language to be 



universal.  Thus, the final two weeks of the course were devoted 

to an exploration of the power of the CHUMP language itself. 

8. THE CHUMPA#ESE LA#GUAGE 
Clearly the CHUMP's 64-bit RAM is no match for a Turing 

machine's infinite tape.  Therefore, we began talking about what 

the CHUMP language could do if it weren't limited by 4-bit 

values, addresses, etc.  We referred to this unlimited form of the 

language as "Chumpanese", and represented it with an assembly-

like syntax.  In Chumpanese: 

• Programs may be arbitrarily long. 

• All values are integers of arbitrarily large magnitude. 

• There are an infinite number of memory locations. 

• Names are used to identify line numbers, memory 

addresses, and memory offsets. 

For example, the following listings show a simple 

Chumpanese program and an equivalent Java program. 

loop: READ count  while (true) 
      LOAD IT    count++; 
      ADD 1 
      STORETO count 
      GOTO loop 

It can be shown that Chumpanese is indeed a universal 

language by demonstrating that any program in a known universal 

language can be translated into an equivalent Chumpanese 

program.  (For example, the universal One Instruction Computer's 

SUBZ command can be translated into a sequence of nine 

Chumpanese instructions.)  However, we decided that such a 

proof would be tedious and potentially unconvincing to our 

students.  Instead, we aimed to develop their intuition that 

Chumpanese was universal by teaching them how to emulate the 

common programming constructs of a language they already 

believed to be universal:  Java. 

We therefore taught students to represent variables as 

memory addresses in Chumpanese, to translate if and while 
statements into sequences with IFZERO and GOTO commands, to 

see reference-type variables as memory locations containing 

addresses of other memory locations, to represent arrays and 

simple objects (really structs) as contiguous segments of memory, 

and to view array indices and instance variable names as offsets 

into that memory.  We showed students how to represent a stack 

and how to write Chumpanese sequences that could push/pop 

stack values.  Finally, we taught students to use PUSH and POP 
macros to implement procedures and procedure calls, thereby 

connecting their understanding of computer architecture to the 

material they had studied in AP Computer Science. 

9. REFLECTIO#S 
On the whole, the course and the lab kit were overwhelming 

successes, with all 18 students building functional computer 

processors (with varying degrees of help).  Students enjoyed the 

course quite a bit, and final exam responses indicate that most left 

with a thorough understanding of how to design combinational 

logic circuits and finite state machines, how their processor 

worked, and how to translate the simplest Java code segments into 

machine language. 

Of course, there are a few aspects of the course that did not 

work out as well as we had hoped.  In our software-based courses, 

students are able to debug most errors without teacher assistance.  

When a student does need help, a quick glance at their output or 

code is usually sufficient for us to advise them as to what to try 

next.  Our experience teaching computer architecture, however, 

was entirely different.  Although a few students did master the art 

of hardware debugging, many of our best programmers found 

themselves helpless to debug their circuitry.  It seemed that 

students were constantly asking for help from every corner of the 

classroom.  Because a hardware bug typically takes much more 

time to address than a software one, helping a single student could 

easily devour an entire class period, while other students grew 

increasingly frustrated waiting for help. 

Although the processor design proved to be robust and 

reproducible, the students found some of the supporting elements 

of the lab kit to be frustrating at times.  By far, the largest 

hardware frustration we faced concerned power consumption.  

Students spent hours debugging problems due only to dead 

batteries.  Although the simple circuits students built at the 

beginning of the course did not draw much current, the completed 

CHUMP, with its EEPROMs, RAM, ALU, etc., drained the 9-volt 

batteries at a rate sometimes exceeding one battery per hour of 

use.  We therefore needed to replace batteries frequently near the 

end of the course. 

Finally, students had difficulty with the CHUMP instruction 

set.  They frequently confused the READ and LOAD commands, as 

well as the constant and memory variants of each instruction.  

This confusion hampered their ability to debug their processors, 

although most students understood the instruction set by the time 

the course ended.  In retrospect, we wish we had provided the 

students with a Chumpanese virtual machine, and had them use it 

to complete a set of programming exercises before assigning them 

to wire the CHUMP datapath. 

It would also have helped to leave more time at the end of 

the course to explore more advanced Chumpanese programs 

involving procedures.  These exercises proved to be too much for 

all students to grasp in a limited time.  Nonetheless, the students' 

initial skepticism regarding the power of their simple processors 

gradually disappeared.  Ultimately, we believe students left the 

course with an appreciation for how even the most high-level 

software must run as a sequence of simple commands by a 

computer processor which is no more than an arrangement of 

fluctuating voltages. 
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